Skip to content

Visual Interpretation

๐ŸŒŸ Purpose

This visual guide is designed to help analysts evaluate and explain the performance of classification models using intuitive and effective plots. It complements the Advanced Classifier Modeling Guidebook by focusing on diagnostics, interpretability, stakeholder communication, and visual storytelling.


๐Ÿงฎ 1. Confusion Matrix

๐ŸŽฏ Purpose:

Break down actual vs predicted class counts. Ideal for communicating results in simple binary or multiclass settings.

โœ… Visual Tips:

  • Add count and percentage labels.
  • Use heatmaps with color emphasis on misclassifications.
  • Normalize by rows (recall) or columns (precision) based on goal.
from sklearn.metrics import ConfusionMatrixDisplay
ConfusionMatrixDisplay.from_predictions(y_test, y_pred, cmap="Blues", normalize=None)

๐Ÿ“˜ Use Cases:

  • Binary classification summary
  • Error audit for multiclass models

๐Ÿ“‰ 2. ROC Curve & AUC

๐ŸŽฏ Purpose:

Evaluate the modelโ€™s ability to rank positive instances above negatives.

โœ… Interpretation:

  • AUC = 1.0: Perfect ranking
  • AUC = 0.5: Random guessing
  • ROC closer to top-left = better classifier
from sklearn.metrics import roc_curve, roc_auc_score
fpr, tpr, _ = roc_curve(y_test, y_proba)
plt.plot(fpr, tpr, label=f"AUC = {roc_auc_score(y_test, y_proba):.2f}")

๐Ÿ“˜ Use Cases:

  • Binary classifiers with probabilistic output
  • High-stakes classification where ranking matters

๐ŸŒฟ 3. Precision-Recall Curve

๐ŸŽฏ Purpose:

More informative than ROC when classes are highly imbalanced.

โœ… Interpretation:

  • Shows how precision changes as recall increases
  • Area under PR curve (PR-AUC) valuable in imbalance-sensitive tasks
from sklearn.metrics import precision_recall_curve
precision, recall, _ = precision_recall_curve(y_test, y_proba)
plt.plot(recall, precision)

๐Ÿ“˜ Use Cases:

  • Fraud detection, churn modeling, medical diagnosis

๐ŸŒ 4. Calibration Curve

๐ŸŽฏ Purpose:

Assess how well predicted probabilities match actual observed outcomes.

โœ… Interpretation:

  • Diagonal = perfect calibration
  • Above = underconfident, below = overconfident
from sklearn.calibration import calibration_curve
prob_true, prob_pred = calibration_curve(y_test, y_proba, n_bins=10)
plt.plot(prob_pred, prob_true, marker='o')

๐Ÿ“˜ Use Cases:

  • Risk modeling
  • Post-hoc probability tuning

๐Ÿ’ช 5. Feature Importance Plots

๐ŸŽฏ Purpose:

Show which features most influence model predictions.

โœ… Tools:

  • .feature_importances_ from tree models
  • Permutation-based importance
  • SHAP values for global or local importance
from sklearn.inspection import permutation_importance
results = permutation_importance(model, X_test, y_test)

๐Ÿ“˜ Use Cases:

  • Model transparency in regulated domains
  • Feature selection

๐Ÿ”Ž 6. SHAP Plots

๐ŸŽฏ Purpose:

Explain individual predictions or global feature patterns.

โœ… Plot Types:

  • Summary plot (global importance)
  • Dependence plot (interactions)
  • Force plot (local explanation)
import shap
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X_test)
shap.summary_plot(shap_values, X_test)

๐Ÿ“˜ Use Cases:

  • Production explainability (black-box models)
  • Trust-building in model audits

๐Ÿ–ผ๏ธ 7. Class Confidence Visualization

๐ŸŽฏ Purpose:

Visualize the confidence distribution of classifier predictions.

โœ… Plot Ideas:

  • Histogram of y_proba
  • Bar chart of top-N class probabilities for individual predictions
  • Misclassification overlay with low-confidence highlight
plt.hist(y_proba, bins=20)
plt.xlabel("Predicted Probability")
plt.ylabel("Frequency")

๐Ÿ“˜ Use Cases:

  • Threshold tuning
  • Model uncertainty audit

๐Ÿ“Š 8. Visual Flow Template

Use Case Recommended Visuals
Binary classification Confusion matrix, ROC, PR curve
Imbalanced classes PR curve, calibration plot, confidence histogram
Probabilistic models Calibration curve, log-loss distribution
Tree/ensemble models SHAP summary, permutation importances
Multiclass models ROC-AUC (OvR), per-class confusion heatmap

๐Ÿ“… TODO

  • [ ] Add matplotlib/seaborn templates for each plot type
  • [ ] Add multiclass PR curve and ROC-AUC demo
  • [ ] Add visual glossary for presentations and stakeholders
  • [ ] Build overlay toolkit: c