Skip to content

Advanced Visual Interpretation


๐ŸŽฏ Purpose

This guide provides advanced visual tools for evaluating clustering models. It focuses on diagnosing cohesion, separation, density structure, and interpretability. It supports model comparison, hyperparameter tuning, and communication in unsupervised workflows.


๐Ÿงญ 1. Dimensionality Reduction Visualization (PCA / UMAP / t-SNE)

Purpose: Visually inspect cluster shape, separation, and noise.

import umap
embedding = umap.UMAP(n_neighbors=15).fit_transform(X_scaled)
plt.scatter(embedding[:, 0], embedding[:, 1], c=labels, cmap="Spectral")

โœ”๏ธ Use consistent color palette across models โœ”๏ธ Apply same reduction method for fair comparisons


๐Ÿ“ˆ 2. Silhouette Plot (Cohesion vs Separation)

Purpose: Assess how well each sample fits within its cluster.

from sklearn.metrics import silhouette_samples
samples = silhouette_samples(X_scaled, labels)

โœ”๏ธ Taller bars = stronger assignment โš ๏ธ Negative values = potential misclassification


๐Ÿ“‰ 3. Cluster Size Distribution

Purpose: Detect cluster imbalance or dominance.

pd.Series(labels).value_counts().plot(kind='bar')

โœ”๏ธ Expect noise label (-1) for DBSCAN / HDBSCAN โœ”๏ธ Balance helps interpretability and fairness


๐ŸŒก 4. Density and Distance Heatmaps

Purpose: Visualize pairwise distance structure.

from sklearn.metrics import pairwise_distances
sns.heatmap(pairwise_distances(X_scaled))

โœ”๏ธ Use with hierarchical methods or to explain DBSCAN structure


๐Ÿงฎ 5. Centroid / Medoid Profiles (Radar / Heatmaps)

Purpose: Explain group characteristics by feature.

grouped = df.groupby('cluster').mean()
sns.heatmap(grouped.T, cmap="coolwarm")

โœ”๏ธ Ideal for stakeholder presentations โœ”๏ธ Use parallel coordinates for wide feature spaces


๐Ÿ“ฆ 6. Silhouette Score vs Hyperparameter Plot

Purpose: Tune k, eps, or model choice.

plt.plot(k_values, silhouette_scores)

โœ”๏ธ Visualizes clustering quality over parameter sweep โœ”๏ธ Elbow, knee, or peak = strong candidate


๐Ÿ” 7. Cluster Overlap or Drift Comparison

Purpose: Compare clusters over time, feature changes, or scale.

  • Compare UMAP/PCA projections by model run
  • Use color-coded label overlay
  • Use Adjusted Rand Index or Confusion Matrix between runs

๐Ÿ“‹ Analyst Visual QA Checklist

  • [ ] PCA/UMAP shows clear grouping?
  • [ ] Silhouette plot reviewed?
  • [ ] Cluster size balance visualized?
  • [ ] Centroid heatmaps prepared?
  • [ ] Parameter sweep curve used to justify k/eps?
  • [ ] Drift or rerun visuals saved?

๐Ÿ’ก Final Tip

โ€œIf your clustering visuals donโ€™t tell a story, neither will your segments. Use visual cohesion to validate structural insight.โ€

Use with: Clustering Statistical Summary, Evaluation Checklist, and Decision Card.