EDA Guidebook
๐ฏ Purpose
This guide outlines how to explore and prepare unlabeled data for clustering. It focuses on understanding structure, distribution, feature behavior, and conditions that influence model choices such as K-Means, DBSCAN, HDBSCAN, GMM, and hierarchical clustering.
๐ง 1. Confirm Unsupervised Clustering Use Case¶
- [ ] โ No target/label column (unsupervised setting)
- [ ] โ Goal: segmentation, anomaly detection, or structure discovery
- [ ] โ Interpretability vs flexibility prioritized (e.g., centroid profiles vs irregular shapes)
๐ 2. Shape & Structure of the Dataset¶
๐น Dimensionality Check¶
X.shape # rows, features
โ๏ธ Consider dimensionality reduction (PCA, UMAP) when d > 10
๐น Missingness Summary¶
df.isnull().sum()
โ๏ธ Ensure consistent imputation or deletion strategy
๐ฆ 3. Feature Distribution & Skew¶
๐น Histograms & KDEs¶
sns.histplot(data=df, x='feature', kde=True)
โ๏ธ Flag skewed variables for transformation โ๏ธ Right-skewed features may benefit from log scaling
๐น Boxplots¶
sns.boxplot(data=df.select_dtypes(include='number'))
โ๏ธ Identify univariate outliers
๐ 4. Scaling & Normalization Prep¶
๐น Scaling Check¶
df.describe() # compare mean, std, max across features
โ๏ธ Normalize for KMeans, DBSCAN, GMM if using distance-based models โ๏ธ Tree-based distance methods (rare) may skip this step
๐น Suggested Transformers¶
from sklearn.preprocessing import StandardScaler, MinMaxScaler
๐งฎ 5. Correlation + Redundancy¶
๐น Correlation Heatmap¶
sns.heatmap(df.corr(), cmap='coolwarm', annot=False)
โ๏ธ Identify strongly correlated pairs โ๏ธ Consider PCA or feature pruning if redundancy > 0.85
๐ 6. Outlier Detection (Pre-Clustering)¶
๐น Z-Score or IQR-Based Filtering¶
from scipy.stats import zscore
np.abs(zscore(df.select_dtypes(include='number'))) > 3
โ๏ธ Remove/flag high outliers to avoid skewing cluster centers
๐น Visual Outlier Inspection¶
- Boxplot
- PCA scatter with density shading
๐ 7. Dimensionality Reduction (for Visual Inspection)¶
๐น PCA or UMAP for 2D Shape Review¶
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
โ๏ธ Plot with color coding to visually inspect for clusters โ๏ธ Compare structure across scaled vs unscaled data
๐ Analyst EDA Checklist for Clustering¶
- [ ] Dataset has no target label
- [ ] Numeric and categorical features separated and reviewed
- [ ] Distributions checked for skew, outliers, and scale variance
- [ ] Features scaled using StandardScaler or MinMaxScaler
- [ ] Correlation heatmap used to identify redundancy
- [ ] PCA or UMAP previewed to inspect shape
- [ ] Feature ranges aligned (avoid dominance by one feature)
- [ ] Outlier strategy documented
๐ก Final Tip¶
โClustering finds what you feed it โ scale, shape, and outliers are just as important as data volume.โ
Use this before: K-Means, DBSCAN, GMM, HDBSCAN, Spectral, or Hierarchical clustering.