Clustering Modeling Pipeline Guidebook
🎯 Purpose
This guidebook provides a modular, analyst-ready pipeline for building, evaluating, and interpreting unsupervised clustering models in Python. It supports KMeans, DBSCAN, GMM, and hierarchical clustering workflows with structure and clarity.
🔁 1. Pipeline Overview¶
[ Phase 1: Imports + Config ]
[ Phase 2: Load + Prep ]
[ Phase 3: EDA + Scaling ]
[ Phase 4: Model + Tune ]
[ Phase 5: Evaluate + Visualize ]
[ Phase 6: Export + Label ]
⚙️ 2. Clustering Skeleton (Generalized Workflow)¶
# Phase 1: Imports
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import seaborn as sns
# Phase 2: Load
df = pd.read_csv("cleaned_features.csv")
# Phase 3: Scale (Required!)
X = df.select_dtypes(include='number')
X_scaled = StandardScaler().fit_transform(X)
# Phase 4: Model
kmeans = KMeans(n_clusters=4, random_state=42)
kmeans.fit(X_scaled)
df['cluster'] = kmeans.labels_
# Phase 5: Evaluate
sns.pairplot(df, hue='cluster')
# Phase 6: Export
df.to_csv("clustered_output.csv", index=False)
🧪 3. Model-Specific Adjustments¶
Model | Key Params | Notes |
---|---|---|
KMeans | n_clusters |
Use elbow/gap method to select k |
DBSCAN | eps , min_samples |
Use k-distance plot to tune |
GMM | n_components , cov_type |
Use AIC/BIC for model selection |
Agglomerative | n_clusters , linkage |
Pair with dendrogram plot |
📈 4. Evaluation Visuals¶
- Pairplots / scatter plots (
sns.pairplot
,sns.scatterplot
) - Cluster heatmap of averages (mean value per cluster)
- Silhouette plots (for cohesion vs separation)
- PCA/UMAP dimensionality reduction (for visualization)
🧠 5. Labeling & Profiling Clusters¶
# Group by cluster for summary stats
cluster_profiles = df.groupby('cluster').mean()
- Add meaningful labels if possible (e.g., “High spenders”, “Inactive users”)
- Save cluster mapping or apply to new data with saved scaler + model
✅ Clustering Pipeline Checklist¶
- [ ] Numeric features scaled
- [ ] Model parameters selected with visual/tuning logic
- [ ] Evaluation includes plots and silhouette scores
- [ ] Clusters labeled or described meaningfully
- [ ] Final output saved to
/outputs/
with cluster column
💡 Tip¶
“Clustering is pattern discovery — label what matters, and always show the shape.”