Skip to content

Modeling Pipeline Guidebook (Regression & Classification)


🎯 Purpose

This guidebook outlines a modular, notebook-driven pipeline for regression and classification modeling in Python. It supports scikit-learn and statsmodels workflows, emphasizes clarity, testability, and includes checkpoint logic.


πŸ“Š 1. Pipeline Overview

[ Phase 1: Import + Config ]
[ Phase 2: Load + Explore ]
[ Phase 3: Clean + Transform ]
[ Phase 4: Split + Model ]
[ Phase 5: Evaluate + Explain ]
[ Phase 6: Export + Save ]

βš™οΈ 2. Modeling Skeleton (Core Workflow)

# Phase 1: Imports
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report

# Phase 2: Load Data
df = pd.read_csv("cleaned_dataset.csv")

# Phase 3: Preprocessing
X = df.drop(columns=['target'])
y = df['target']

# Phase 4: Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y)

# Phase 5: Model + Evaluate
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred))

# Phase 6: Export
pd.DataFrame({"y_true": y_test, "y_pred": y_pred}).to_csv("predictions.csv", index=False)

πŸ”§ 3. Optional Layers

Add-on Module
Cross-validation cross_val_score, GridSearchCV
Pipelines Pipeline() + ColumnTransformer() for scale/encode
Statsmodels Use ols or glm for parametric model summaries
Feature Importance .coef_, .feature_importances_, SHAP
Export formats joblib, pickle, .csv, .json

πŸ“ 4. Directory Expectations

Folder Contents
/data/ Cleaned inputs or feature-engineered sets
/outputs/ Model predictions or coefficients
/models/ Pickled/scored models if applicable
/notebooks/ Final delivery notebook

βœ… Modeling Checklist

  • [ ] Clear definition of X and y
  • [ ] Feature transformation applied after split (to avoid leakage)
  • [ ] Evaluation printed and plotted
  • [ ] Model exported or saved to /outputs/
  • [ ] Modeling assumptions or limitations noted

πŸ’‘ Tip

β€œA great model isn't just accurate β€” it’s repeatable, modular, and easy to explain.”